Escherichia coli-Specific Induction of Inflammatory Cytokines and Chemokines upon Infections with Periodontal Pathogens
Keywords:
Inflammatory Cytokines, Chemokines, Periodontal Pathogens, Escherichia coliAbstract
In a multifaceted interaction with interleukins (ILs), Escherichia coli (E. coli) serves both an inflammatory response initiator in the host and a transporter for therapeutically delivering modified ILs. The majority of E. coli strains that cause illness produce interleukins that promote inflammation, but naturally occurring or artificially created strains of the bacteria can either cause inflammation to decrease or be utilized to administer therapeutic interleukins. The serum concentrations of interleukin-12 (IL-12) and interleukin-17 (IL-17) were measured in micrograms per milliliter for three different infection types: implant, bacteria-implant (infections when implants are present), and bacteria only (infections where implants are not present). At the same time, the serum concentrations of IL-17 were reported as 23, 14, and 9 (pg/ml), respectively. Both the sterile and infected implants had statistically significant p-values before Bonferroni correction. There are notable distinctions between infections that occur with and without implants. For CXCL-4, the analysis of serum chemokines CXCL-4 and CCL-5 (pg/ml) revealed values of 25, 13, and 18 (pg/ml) in the Implant, Bacteria-implant, and Bacteria only infection categories, respectively. Whereas CCL-5 was found to be (81, 67, and 49 (pg/ml)) in that order. Before Bonferroni correction, there was a statistically significant difference between infected and sterile implants, as well as between infections that occurred with and without implants. In order to investigate the host's inflammatory responses systemically, including IFN-γ and granulocyte colony-stimulating factor (G-CSF), the multiplex test was expanded. Results for systemic analysis of IFN-γ and granulocyte colony-stimulating factor (G-CSF) in terms of pg/ml showed levels of 26, 14, and 7 in the Implant, Bacteria-implant, and Bacteria only infection categories, respectively, for IFN-γ. The G-CSF levels were 53, 116, and 71 pg/ml, respectively.
Downloads
References
Miriam Beer Torchinsky, Johan Garaude, J. Magarian Blander, Infection and apoptosis as a combined inflammatory trigger, Curr. Opin. Immunol. 22 (1) (2010) 55–62.
G. Lopez-Castejon, D. Brough, Understanding the mechanism of IL-1β secretion Cytokine Growth Factor Rev. 22 (4) (2011) 189–195.
C.A. Dinarello, Anti-inflammatory agents: present and future, Cell 140 (6) (2010) 935–950.
Bygd, H. C., Forsmark, K. D. and Bratlie, K. M. (2015). Altering in vivo macrophage responses with modified polymer properties. Biomaterials 56, 187-197.
Ceponis, P. J. M., McKay, D. M., Ching, J. C. Y., Pereira, P. and Sherman, P. M. (2003). Enterohemorrhagic Escherichia coli O157:H7 disrupts Stat1-mediated gamma interferon signal transduction in epithelial cells. Infect. Immun. 71, 1396-1404.
Chen, C., Blumentritt, C. A., Curtis, M. M., Sperandio, V., Torres, A. G. and Dudley, E. G. (2013). Restrictive streptomycin resistance mutations decrease the formation of attaching and effacing lesions in Escherichia coli O157:H7 strains. Antimicrob. Agents Chemother. 57, 4260-4266.
Cheng, Y.-L., Song, L.-Q., Huang, Y.-M., Xiong, Y.-W., Zhang, X.-A., Sun, H., Zhu, X.-P., Meng, G.-X., Xu, J.-G. and Ren, Z.-H. (2015). Effect of enterohaemorrhagic Escherichia coli O157:H7-specific enterohaemolysin on interleukin-1β production differs between human and mouse macrophages due to the different sensitivity of NLRP3 activation. Immunology 145, 258-267.
Brando, R. J. F., Miliwebsky, E., Bentancor, L., Deza, N., Baschkier, A., Ramos, M. V., Ferná ndez, G. C., Meiss, R., Rivas, M. and Palermo, M. S. (2008). Renal damage and death in weaned mice after oral infection with Shiga toxin 2- producing Escherichia coli strains. Clin. Exp. Immunol. 153, 297-306.
S. Herold, M. Steinmueller, W. Wulffen, L. Cakarova, R. Pinto, S. Pleschka, et al., Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophageexpressed TNF-related apoptosis-inducing ligand, J. Exp. Med. 205 (13) (2008) 3065–3077.
E. Ahmadzadeh, H. Zarkesh-Esfahani, R. Roghanian, F.N. Akbar, Comparison of Helicobacter pylori and Escherichia coli in induction of TNF-alpha mRNA from human peripheral blood mononuclear cells, Indian J. Med. Microbiol. 28 (2010) 233–237.
A. Kumar, K.P. Singh, P. Bali, S. Anwar, A. Kaul, O.P. Singh, et al., Inos polymorphism modulates iNOS/NO expression via impaired antioxidant and ROS content in P. vivax and P. falciparum infection, Redox Biol. 15 (2018) 192–206.
N. Allocati, M. Masulli, M.F. Alexeyev, C. Di Ilio, Escherichia coli in Europe: an overview, Int. J. Environ. Res. Publ. Health 10 (12) (2013) 6235–6254.
B.T. Huynh, M. Padget, B. Garin, P. Herindrainy, E. Kermorvant-Duchemin, L. Watier, et al., Burden of bacterial resistance among neonatal infections in low income countries: how convincing is the epidemiological evidence? BMC Infect. Dis. 15 (2015) 127.
Cole, D., Griffin, P. M., Fullerton, K. E., Ayers, T., Smith, K., Ingram, L. A., Kissler, B. and Hoekstra, R. M. (2014). Attributing sporadic and outbreak- associated infections to sources: blending epidemiological data. Epidemiol. Infect. 142, 295-302.
Conlan, J. W. and Perry, M. B. (1998). Susceptibility of three strains of conventional adult mice to intestinal colonization by an isolate of Escherichia coli O157:H7. Can. J. Microbiol. 44, 800-805.
Conway, T. and Cohen, P. S. (2015). Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol. Spectr. 3.
Croxen, M. A., Law, R. J., Scholz, R., Keeney, K. M., Wlodarska, M. and Finlay, B. B. (2013). Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 26, 822-880.
Ding, S., Blue, R. E., Morgan, D. R. and Lund, P. K. (2014). Comparison of multiple enzyme activatable near-infrared fluorescent molecular probes for detection and quantification of inflammation in murine colitis models. Inflamm. Bowel Dis. 20, 363-377.
Eaton, K. A., Friedman, D. I., Francis, G. J., Tyler, J. S., Young, V. B., Haeger, J., Abu-Ali, G. and Whittam, T. S. (2008). Pathogenesis of renal disease due to enterohemorrhagic Escherichia coli in germ-free mice. Infect. Immun. 76, 3054-3063.
Eaton, K. A., Fontaine, C., Friedman, D. I., Conti, N. and Alteri, C. J. (2017). Pathogenesis of colitis in germ-free mice infected with EHEC O157:H7. Vet. Pathol. 54, 710-719.
Eggesbø, M., Moen, B., Peddada, S., Baird, D., Rugtveit, J., Midtvedt, T., Bushel, P. R., Sekelja, M. and Rudi, K. (2011). Development of gut microbiota in infants not exposed to medical interventions. APMIS 119, 17-35.
Erdem, A. L., Avelino, F., Xicohtencatl-Cortes, J. and Giró n, J. A. (2007). Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J. Bacteriol. 189, 7426-7435.
Feng, P., Lampel, K. A., Karch, H. and Whittam, T. S. (1998). Genotypic and phenotypic changes in the emergence of Escherichia coli O157:H7. J. Infect. Dis. 177, 1750-1753.
Francis, D. H., Collins, J. E. and Duimstra, J. R. (1986). Infection of gnotobiotic pigs with an Escherichia coli O157:H7 strain associated with an outbreak of hemorrhagic colitis. Infect. Immun. 51, 953-956.
Francis, D. H., Moxley, R. A. and Andraos, C. Y. (1989). Edema disease-like brain lesions in gnotobiotic piglets infected with Escherichia coli serotype O157:H7. Infect. Immun. 57, 1339-1342.
Gao, X., Wan, F., Mateo, K., Callegari, E., Wang, D., Deng, W., Puente, J., Li, F., Chaussee, M. S., Finlay, B. B. et al. (2009). Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function. PLoS Pathog. 5, e1000708.
Gauger, E. J., Leatham, M. P., Mercado-Lubo, R., Laux, D. C., Conway, T. and Cohen, P. S. (2007). Role of motility and the flhDC operon in Escherichia coli MG1655 colonization of the mouse intestine. Infect. Immun. 75, 3315-3324.
Geuking, M. B., Cahenzli, J., Lawson, M. A. E., Ng, D. C. K., Slack, E., Hapfelmeier, S., McCoy, K. D. and Macpherson, A. J. (2011). Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794-806.
Goswami, K., Chen, C., Xiaoli, L., Eaton, K. A. and Dudley, E. G. (2015). Coculture of Escherichia coli O157:H7 with a nonpathogenic E. coli strain increases toxin production and virulence in a germfree mouse model. Infect. Immun. 83, 4185-4193.
Gould, L. H., Mody, R. K., Ong, K. L., Clogher, P., Cronquist, A. B., Garman, K. N., Lathrop, S., Medus, C., Spina, N. L., Webb, T. H. et al. (2013). Increased recognition of non-O157 Shiga toxin-producing Escherichia coli infections in the United States during 2000-2010: epidemiologic features and comparison with E. coli O157 infections. Foodborne Pathog. Dis. 10, 453-460.
Gradel, K. O., Nielsen, H. L., Schønheyder, H. C., Ejlertsen, T., Kristensen, B. and Nielsen, H. (2009). Increased short- and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis. Gastroenterology 137, 495-501.
Gyles, C. L. (2007). Shiga toxin-producing Escherichia coli: an overview. J. Anim. Sci. 85, E45-E62.
Hauf, N. and Chakraborty, T. (2003). Suppression of NF-kappa B activation and proinflammatory cytokine expression by Shiga toxin-producing Escherichia coli. J. Immunol. 170, 2074-2082.
Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., Han, C. G., Ohtsubo, E., Nakayama, K., Murata, T. et al. (2001). Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8, 11-22.
Henderson, A. L., Brand, M. W., Darling, R. J., Maas, K. J., Detzel, C. J., Hostetter, J., Wannemuehler, M. J. and Weaver, E. M. (2015). Attenuation of colitis by serum-derived bovine immunoglobulin/protein isolate in a defined microbiota mouse model. Dig. Dis. Sci. 60, 3293-3303.
Hong, S., Oh, K.-H., Cho, S.-H., Kim, J.-C., Park, M.-S., Lim, H.-S. and Lee, B.-K. (2009). Asymptomatic healthy slaughterhouse workers in South Korea carrying Shiga toxin-producing Escherichia coli. FEMS Immunol. Med. Microbiol. 56, 41-47.
Hooper, L. V., Littman, D. R. and Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science 336, 1268-1273.
Jandu, N., Ceponis, P. J. M., Kato, S., Riff, J. D., McKay, D. M. and Sherman, P. M. (2006). Conditioned medium from enterohemorrhagic Escherichia coli- infected T84 cells inhibits signal transducer and activator of transcription 1 activation by gamma interferon. Infect. Immun. 74, 1809-1818.
Jandu, N., Shen, S., Wickham, M. E., Prajapati, R., Finlay, B. B., Karmali, M. A. and Sherman, P. M. (2007). Multiple seropathotypes of verotoxin-producing Escherichia coli (VTEC) disrupt interferon-gamma-induced tyrosine phosphorylation of signal transducer and activator of transcription (Stat)-1. Microb. Pathog. 42, 62-71.
Joensen, K. G., Scheutz, F., Lund, O., Hasman, H., Kaas, R. S., Nielsen, E. M. and Aarestrup, F. M. (2014). Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52, 1501-1510.
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. and Morishima, K. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353-D361.
Kang, G., Pulimood, A. B., Koshi, R., Hull, A., Acheson, D., Rajan, P., Keusch, G. T., Mathan, V. I. and Mathan, M. M. (2001). A monkey model for enterohemorrhagic Escherichia coli infection. J. Infect. Dis. 184, 206-210.
Karpman, D., Connell, H., Svensson, M., Scheutz, F., Aim, P. and Svanborg, C. (1997). The role of lipopolysaccharide and Shiga-like toxin in a mouse model of Escherichia coli O157:H7 infection. J. Infect. Dis. 175, 611-620.
Karve, S. S., Pradhan, S., Ward, D. V. and Weiss, A. A. (2017). Intestinal organoids model human responses to infection by commensal and Shiga toxin producing Escherichia coli. PLoS ONE 12, e0178966.
Kim, Y., Oh, S., Park, S. and Kim, S. H. (2009). Interactive transcriptome analysis of enterohemorrhagic Escherichia coli (EHEC) O157:H7 and intestinal epithelial HT- 29 cells after bacterial attachment. Int. J. Food Microbiol. 131, 224-232.
Leatham, M. P., Banerjee, S., Autieri, S. M., Mercado-Lubo, R., Conway, T. and Cohen, P. S. (2009). Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect. Immun. 77, 2876-2886.
Lindgren, S. W., Melton, A. R. and O’Brien, A. D. (1993). Virulence of enterohemorrhagic Escherichia coli O91:H21 clinical isolates in an orally infected mouse model. Infect. Immun. 61, 3832-3842.
Mahalingam, S. and Karupiah, G. (1999). Chemokines and chemokine receptors in infectious diseases. Immunol. Cell Biol. 77, 469-475.
McCloy, R. A., Rogers, S., Caldon, C. E., Lorca, T., Castro, A. and Burgess, A. (2014). Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13, 1400-1412.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Current Clinical and Medical Education







